
Silanes
Les silanes sont des composés à base de silicium avec un ou plusieurs groupes organiques attachés à un atome de silicium. Ils servent de building blocks cruciaux dans la synthèse organique et inorganique, notamment dans la modification de surface, la promotion de l'adhésion et la production de revêtements et de mastics. Les silanes sont largement utilisés dans l'industrie des semi-conducteurs, le traitement du verre et comme agents de réticulation en chimie des polymères. Chez CymitQuimica, nous proposons une gamme variée de silanes conçus pour vos applications de recherche et industrielles.
Sous-catégories appartenant à la catégorie "Silanes"
Produits appartenant à la catégorie "Silanes"
Trier par
3-AMINOPROPYLMETHYLBIS(TRIMETHYLSILOXY)SILANE
CAS :Formule :C10H29NO2Si3Degré de pureté :97%Couleur et forme :Straw LiquidMasse moléculaire :279.61TRIPHENYLSILANE
CAS :Tri-substituted Silane Reducing Agent Organosilanes are hydrocarbon-like and possess the ability to serve as both ionic and free-radical reducing agents. These reagents and their reaction by-products are safer and more easily handled and disposed than many other reducing agents. The metallic nature of silicon and its low electronegativity relative to hydrogen lead to polarization of the Si-H bond yielding a hydridic hydrogen and a milder reducing agent compared to aluminum-, boron-, and other metal-based hydrides. A summary of some key silane reductions are presented in Table 1 of the Silicon-Based Reducing Agents brochure. Triphenylsilane; Triphenylsilanlyl hydride More effective radical-based reagent for reduction of organic halides than the trialkylsilanesCompares well with tri-n-butyltin hydride in reduction of enones to ketonesShows good selectivity in the reduction of cyclic hemiacetalsConverts O-acetyl furanoses and pyranoses to deoxy sugarsExtensive review of silicon based reducing agents: Larson, G.; Fry, J. L. "Ionic and Organometallic-Catalyzed Organosilane Reductions", Wipf, P., Ed.; Wiley, 2007Formule :C18H16SiDegré de pureté :97%Couleur et forme :Off-White SolidMasse moléculaire :260.41Isopropoxytrimethylsilane
CAS :Formule :C6H16OSiDegré de pureté :>98.0%(GC)Couleur et forme :Colorless to Almost colorless clear liquidMasse moléculaire :132.28PENTAMETHYLDISILOXANE
CAS :Formule :C5H16OSi2Degré de pureté :97%Couleur et forme :LiquidMasse moléculaire :148.351-(Trimethylsilyl)-1-propyne
CAS :Formule :C6H12SiDegré de pureté :>98.0%(GC)Couleur et forme :Colorless to Almost colorless clear liquidMasse moléculaire :112.251,4-Dibromo-2,5-bis[2-(trimethylsilyl)ethynyl]benzene
CAS :Formule :C16H20Br2Si2Degré de pureté :>98.0%(GC)Couleur et forme :White to Light yellow powder to crystalMasse moléculaire :428.31DIMETHYLDIACETOXYSILANE
CAS :Alkyl Silane - Conventional Surface Bonding Aliphatic, fluorinated aliphatic or substituted aromatic hydrocarbon substituents are the hydrophobic entities which enable silanes to induce surface hydrophobicity. The organic substitution of the silane must be non-polar. The hydrophobic effect of the organic substitution can be related to the free energy of transfer of hydrocarbon molecules from an aqueous phase to a homogeneous hydrocarbon phase. A successful hydrophobic coating must eliminate or mitigate hydrogen bonding and shield polar surfaces from interaction with water by creating a non-polar interphase. Although silane and silicone derived coatings are in general the most hydrophobic, they maintain a high degree of permeability to water vapor. This allows coatings to breathe and reduce deterioration at the coating interface associated with entrapped water. Since ions are not transported through non-polar silane and silicone coatings, they offer protection to composite structures ranging from pigmented coatings to rebar reinforced concrete. A selection guide for hydrophobic silanes can be found on pages 22-31 of the Hydrophobicity, Hydrophilicity and Silane Surface Modification brochure. Dimethyldiacetoxysilane; Diacetoxydimethylsilane Reagent for the preparation of cis-diols and corticosteroidsFormule :C6H12O4SiDegré de pureté :97%Couleur et forme :LiquidMasse moléculaire :176.241-(Trimethylsilyl)-2-naphthyl Trifluoromethanesulfonate
CAS :Formule :C14H15F3O3SSiDegré de pureté :>96.0%(GC)Couleur et forme :Colorless to Light yellow to Light orange clear liquidMasse moléculaire :348.41(3-Bromophenylethynyl)trimethylsilane
CAS :Formule :C11H13BrSiDegré de pureté :95%Couleur et forme :SolidMasse moléculaire :253.21042Tribenzylsilane
CAS :Formule :C21H22SiDegré de pureté :>98.0%(GC)Couleur et forme :White to Light yellow powder to crystalMasse moléculaire :302.49BIS[m-(2-TRIETHOXYSILYLETHYL)TOLYL]POLYSULFIDE
CAS :Bis[m-(2-triethoxysilylethyl)tolyl]polysulfide Sulfur functional dipodal silaneDark, viscous liquid Coupling agent for styrene-butadiene rubber, SBRFormule :C30H50O6S(2-4)Si2Degré de pureté :85%Couleur et forme :Dark LiquidMasse moléculaire :627-691PHENETHYLDIMETHYL(DIMETHYLAMINO)SILANE
CAS :Aromatic Silane - Conventional Surface Bonding Aliphatic, fluorinated aliphatic or substituted aromatic hydrocarbon substituents are the hydrophobic entities which enable silanes to induce surface hydrophobicity. The organic substitution of the silane must be non-polar. The hydrophobic effect of the organic substitution can be related to the free energy of transfer of hydrocarbon molecules from an aqueous phase to a homogeneous hydrocarbon phase. A successful hydrophobic coating must eliminate or mitigate hydrogen bonding and shield polar surfaces from interaction with water by creating a non-polar interphase. Although silane and silicone derived coatings are in general the most hydrophobic, they maintain a high degree of permeability to water vapor. This allows coatings to breathe and reduce deterioration at the coating interface associated with entrapped water. Since ions are not transported through non-polar silane and silicone coatings, they offer protection to composite structures ranging from pigmented coatings to rebar reinforced concrete. A selection guide for hydrophobic silanes can be found on pages 22-31 of the Hydrophobicity, Hydrophilicity and Silane Surface Modification brochure. Phenethyldimethyl(dimethylamino)silane; N,N,1,1-Tetramethyl-1-(2-phenylethyl)silanamine; N,N,1,1-Tetramethyl-1-(2-phenylethyl)-silanamine Contains 10-15% α-isomerFormule :C12H21NSiDegré de pureté :97%Couleur et forme :Straw LiquidMasse moléculaire :207.39N,N-DIDECYL-N-METHYL-N-(3-TRIMETHOXYSILYLPROPYL)AMMONIUM CHLORIDE, 40-42% in methanol
CAS :N,N-didecyl-N-methyl-N-(3-trimethoxysilylpropyl)ammonium chloride; (trimethoxysilylpropyl)didecylmethylammonium chloride; didecylmethyl[3-(trimethoxysilyl)propyl]ammonium chloride Quaternary amino functional trialkoxy silaneIn combination with TEOS (SIT7110.0), forms high pore volume xerogels with adsorptive capacityContains 3-5% Cl(CH2)3Si(OMe)340-42% in methanolFormule :C27H60ClNO3SiCouleur et forme :Straw LiquidMasse moléculaire :510.322-(Trimethylsilyl)ethanol
CAS :Formule :C5H14OSiDegré de pureté :>96.0%(GC)Couleur et forme :Colorless to Almost colorless clear liquidMasse moléculaire :118.251,2-BIS(TRIETHOXYSILYL)ETHYLENE, 92%
CAS :Olefin Functional Alkoxy Silane Silane coupling agents have the ability to form a durable bond between organic and inorganic materials to generate desired heterogeneous environments or to incorporate the bulk properties of different phases into a uniform composite structure. The general formula has two classes of functionality. The hydrolyzable group forms stable condensation products with siliceous surfaces and other oxides such as those of aluminum, zirconium, tin, titanium, and nickel. The organofunctional group alters the wetting or adhesion characteristics of the substrate, utilizes the substrate to catalyze chemical transformations at the heterogeneous interface, orders the interfacial region, or modifies its partition characteristics, and significantly effects the covalent bond between organic and inorganic materials. Dipodal Silane Dipodal silanes are a series of adhesion promoters that have intrinsic hydrolytic stabilities up to ~10,000 times greater than conventional silanes and are used in applications such as plastic optics, multilayer printed circuit boards and as adhesive primers for ferrous and nonferrous metals. They have the ability to form up to six bonds to a substrate compared to conventional silanes with the ability to form only three bonds to a substrate. Many conventional coupling agents are frequently used in combination with 10-40% of a non-functional dipodal silane, where the conventional coupling agent provides the appropriate functionality for the application, and the non-functional dipodal silane provides increased durability. Dipodal silanes additives enhance hydrolytic stability, which impacts on increased product shelf life, ensures better substrate bonding and also leads to improved mechanical properties in coatings as well as composite applications. 1,2-Bis(triethoxysilyl)ethylene; 4,4,7,7-Tetraethoxy-3,8-dioxa-4,7-disiladec-5-ene ~80% trans isomerForms ethylene-bridged mesoporous silicasFormule :C14H32O6Si2Degré de pureté :92%Couleur et forme :LiquidMasse moléculaire :352.57Chlorodimethyl(3-phenylpropyl)silane
CAS :Formule :C11H17ClSiDegré de pureté :>97.0%(GC)Couleur et forme :Colorless to Light yellow to Light orange clear liquidMasse moléculaire :212.79Octadecyltriethoxysilane
CAS :Formule :C24H52O3SiDegré de pureté :>85.0%(GC)Couleur et forme :White or Colorless to Light yellow powder to lump to clear liquidMasse moléculaire :416.76TRIS(TRIETHOXYSILYL)AMINE
CAS :Formule :C18H45NO9Si3Degré de pureté :95%Couleur et forme :LiquidMasse moléculaire :503.81n-BUTYLDIMETHYLSILANE
CAS :Formule :C6H16SiDegré de pureté :97%Couleur et forme :LiquidMasse moléculaire :116.28DIETHYLDIETHOXYSILANE
CAS :Formule :C8H20O2SiDegré de pureté :90%Couleur et forme :LiquidMasse moléculaire :176.3287